Geometric Thickness of Complete Graphs
نویسندگان
چکیده
We define the geometric thickness of a graph to be the smallest number of layers such that we can draw the graph in the plane with straight-line edges and assign each edge to a layer so that no two edges on the same layer cross. The geometric thickness lies between two previously studied quantities, the (graph-theoretical) thickness and the book thickness. We investigate the geometric thickness of the family of complete graphs, {Kn}. We show that the geometric thickness of Kn lies between ⌈(n/5.646) + 0.342⌉ and ⌈n/4⌉, and we give exact values of the geometric thickness of Kn for n ≤ 12 and n ∈ {15, 16}. We also consider the geometric thickness of the family of complete bipartite graphs. In particular, we show that, unlike the case of complete graphs, there are complete bipartite graphs with arbitrarily large numbers of vertices for which the geometric thickness coincides with the standard graph-theoretical thickness.
منابع مشابه
Journal of Graph Algorithms and Applications
We define the geometric thickness of a graph to be the smallest number of layers such that we can draw the graph in the plane with straightline edges and assign each edge to a layer so that no two edges on the same layer cross. The geometric thickness lies between two previously studied quantities, the (graph-theoretical) thickness and the book thickness. We investigate the geometric thickness ...
متن کاملOn Graph Thickness, Geometric Thickness, and Separator Theorems
We investigate the relationship between geometric thickness and the thickness, outerthickness, and arboricity of graphs. In particular, we prove that all graphs with arboricity two or outerthickness two have geometric thickness O(log n). The technique used can be extended to other classes of graphs so long as a standard separator theorem exists. For example, we can apply it to show the known bo...
متن کاملThickness and Colorability of Geometric Graphs
The geometric thickness θ(G) of a graph G is the smallest integer t such that there exist a straight-line drawing Γ of G and a partition of its straight-line edges into t subsets, where each subset induces a planar drawing in Γ . Over a decade ago, Hutchinson, Shermer, and Vince proved that any n-vertex graph with geometric thickness two can have at most 6n − 18 edges, and for every n ≥ 8 they ...
متن کاملBounded-Degree Graphs have Arbitrarily Large Geometric Thickness
The geometric thickness of a graph G is the minimum integer k such that there is a straight line drawing of G with its edge set partitioned into k plane subgraphs. Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004] asked whether every graph of bounded maximum degree has bounded geometric thickness. We answer t...
متن کاملS ep 2 00 5 BOUNDED - DEGREE GRAPHS HAVE ARBITRARILY LARGE GEOMETRIC THICKNESS
The geometric thickness of a graph G is the minimum integer k such that there is a straight line drawing of G with its edge set partitioned into k plane subgraphs. Eppstein [Separating thickness from geometric thickness. In Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004] asked whether every graph of bounded maximum degree has bounded geometric thickness. We answer t...
متن کامل